Fifth Semester B.E. Degree Examination, June/July 2018 Formal Languages and Automata Theory

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Find a deterministic finite automata that recognizes each of the following sets $(\Sigma = \{0, 1\}^*)$

(i) $\{0\}$ (ii) $\{1,00\}$, (iii) $\{1^n \mid n=2, 3, 4 \dots\}$ b. State the alphabets Σ for the following languages:

- (i) $L = \Sigma^* = \{ \in \{0, 1, 00, 01, 11, 000, 001, 010, \dots \} \}$
- (ii) $L = \Sigma^+ = \{a_n \text{ aa, aaa } \dots \}$

(iii) $L = \Sigma^{+} = \{ \in \}$

(05 Marks)

(10 Marks)

c. Design a DFA that recognizes the following language:

L= { W/W is non-empty & has 1 on every odd position }

(05 Marks)

- 2 a Give NFAs with specified Number of states recognizing each of the following languages in all cases, the alphabet is $\Sigma = \{0, 1\}$
 - (i) The language { $W \in \Sigma^*$ | W contains the substring 0101 ie, W = X0101Y for some $X, Y \in \Sigma^*$ } with five states.
 - (ii) The language $\{W \in \Sigma^* \mid W \text{ contains at least two 0's or exactly two 1}^s \}$ with six states.
 - b. Covert the following NFAs to DFAs [Refer Fig.Q2(b)]

(07 Marks)

Fig.Q2(b)

- c. Write a Regular expression for the following language:
 - (i) The language $\{W \in \Sigma^* \mid |W| \text{ is odd, } \Sigma = \{a, b\}\}$

(03 Marks)

3 a. Convert the following ∈NFA into an equivalent DFA [Refer Fig.Q3(a)]. (08 Marks)

Fig.Q3(a)

b. Minimize the following finite automata [Refer Fig.Q3(b)]:

(08 Marks)

Fig.Q3(b) 1 of 2

c. Construct a regular expression corresponding to the Automata given below [Refe Fig.Q3(c)]: (04 Marks

Fig.Q3(c)

- 4 a. Give a Context Free Grammar (CFC) for each of the following language over the alphabet $\Sigma = \{a, b\}$.
 - (i) All strings in the language $L = \{ a^n b^m a^{2n} / n, m \ge 0 \}$
 - (ii) All non empty strings that start and end with the same symbol
 - (iii) All strings with more a's than b's.

(07 Mark)

- b. Is the following language L is regular? Justify your answer.
 - $L = \{a^n \mid n \text{ is prime }\}$

(07 Mark:)

c. State and prove the pumping Lemma for Regular language.

(06 Mark

PART - B

5 a. Design CFG and PDA for the following language:

 $\overline{L} = \{ 0^n 1^n / n \ge 0 \}$, where $\Sigma = \{0, 1\}$

(10 Mark

b. Design a PDA for the following languages L.

 $L = \{ a^i b^j c^k d^l / i + k = j + l, i, j, k, l \ge 0 \}$, where $\Sigma = \{ a, b, c, d \}$

(10 Mark

6 a. Convert the following CFG to a PDA:

 $S \rightarrow aAA$, $A \rightarrow aS/bS/a$

(08 Mark

b. What is the CNF and GNF? Obtain the following grammar in CNF

 $S \rightarrow aBa \mid abba$

 $A \rightarrow ab \mid AA$

 $B \rightarrow aB \mid a$

(12 Mark -)

7 a. For the CFG with productions:

 $S \rightarrow a/aAB \mid aCb, A \rightarrow aB \mid \in, B \rightarrow Ba/A \mid \in,$

 $C \rightarrow B \mid bCb \mid S$, $D \rightarrow dd \mid cC$

- (i) Eliminate ∈ productions
- (ii) Eliminate the unit productions

(iii)Eliminate the useless symbols

(10 Marks)

- b. Prove that the context free Languages are closed under Union concatenation and Klech closure. (10 Marks)
- Write short notes on the following (any four):
 - a. Post correspondence problem
 - b. Applications of Regular expressions
 - c. Multi-tape Turing machine
 - d. Undecidable languages
 - e. Chomsky Hierarchy
 - f. Recursively enumerable languages.

(20 Marks)